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Abstract

A comprehensive model of an electrostatically actuated microcantilever beam separated from the ground plane by

relatively larger gap is formulated accounting for the nonlinearities of the system arising out of electric forces, geometry of

the deflected beam and the inertial terms. Since the gap is relatively large, the electrostatic model is formulated

incorporating higher order correction of electrostatic forces. First static analysis is carried out to match the results

obtained from the proposed model with the results provided by other researchers. It is observed that reduced order model

exhibits good convergence when five or more number of modes is considered for the analysis. Dynamic analysis of the

model is performed with five modes. The study indicates that although electrostatic forces cause softening characteristics

whereas geometric nonlinearity produces stiffening effect on the microstructure, the nonlinearities play a significant role

when pull-in occurs. The consideration of slope and curvature of deformable electrode for modelling the electrostatic

forces for large gap separations predicts more accurate results. For applications in and around pull-in zone, the large

deflection model needs to be considered for effective design.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Electrostatically actuated devices form a broad class of MEMS devices due to their simplicity, as they
require few mechanical components and small voltage levels for actuation [1]. Typical MEMS structures
consist of thin beams with cross-sections in the order of microns and lengths in the order of ten to hundreds of
microns. Efficient electrostatic actuation at reasonable actuation voltages is achieved for the size of the devices
such that the electrostatic gap to beam length is typically of the order of 10�2–10�3. Further reduction in size
of the devices, and, low actuation voltages operations have been made possible by the development of new
materials and advancement in fabrication technologies. In such devices, the length of the electrode is typically
of the order of several micrometers with the gap-length ratio not necessarily small and can be typically of the
order of 10�1–10�2 [2,3] or even larger [4]. For small gap-length ratios, parallel plate approximation of the
electrostatic forces and small deflection assumption for deriving the mechanical model are justified. However,
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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for relatively larger gaps, a model involving geometric nonlinearity and a more accurate approximation of the
electrostatic forces needs to be derived. Electrostatically actuated microbeams (e.g., cantilever and fixed–fixed
microbeams) are used in many MEMS devices such as capacitive MEMS switches and resonant sensors.
Microfabricated cantilever beams are widely used in MEMS capacitive type sensors as the sensing element
[5–8]. In case of an electrostatically actuated microcantilever, when the applied voltage is increased beyond a
critical value, stable equilibrium positions of the beam cease to exist and the elastic beam is pull-in into the
ground plate. This phenomenon known as static pull-in instability has as well been observed experimentally in
Refs. [9,10,19]. In case of applications like microswitches [11,12] or micromirror positioning the transient
behaviour is of great interest. With voltages applied as non-smooth function of time, the kinetic energy and
the dissipation of energy play an important role in defining the dynamic pull-in condition.

The static pull-in voltage depends on the interaction of the nonlinear electrostatic forces and the structural
stiffness of the microcantilever. A further complication arises due to redistribution of electrostatic forces
owing to deformation of the structure thereby modifying the mechanical restoring forces. As a result, couple
field solutions are required. Several approaches have been proposed for the estimation of the static pull-in
parameters. From simple lumped models [10,13,14], on one hand, to powerful 3-D numerical simulations
[15–17] based on FEM/BEM schemes, on the other hand, have been established to elucidate the pull-in
behaviour. The model in Ref. [10] leads to a simplified expression for the pull-in voltage and is not usable for
real MEMS structure. A closed form expression for the pull-in voltage has been derived by Pamidighantam
et al. [13]. Though membrane stiffness due to large deflection has been considered for clamped–clamped beam,
the effective stiffness for cantilever case is valid only for small deflections. The approach of Chowdhury et al.
[14] is based on a linearized uniform approximate model of the nonlinear electrostatic pressure and the load
deflection model of a cantilever beam under uniform pressure incorporating fringing field corrections. They
introduced a compensation factor to compensate for the errors arising out of non-inclusion of the geometric
nonlinearity and the linearization of the electrostatic forces. Computer aided design systems MEMCAD was
developed [15] to simulate electrostatic MEMS. An automated procedure to generate macromodel from a 3-D
FEM simulation was presented in Ref. [16]. This procedure may not be suitable for problems involving large
displacements as the mid-plane stretching effect for the clamped–clamped beams was neglected. Coventor [17]
provides a comparison of the pull-in voltage results obtained from the COVENTORWARE (FEA) and the
ARCHITECT parametric analysis models for various device parameters. FCM, a meshless technique, was
used by Gang and Aluru [18] to simulate linear and nonlinear static behaviour in electrostatic MEMS. Effect
of different geometric variables on the static pull-in voltage was presented for both clamped–clamped and
cantilever beams. Pull-in voltage results obtained through experimental measurements by Hu et al. [19] were
compared to the analytical model based on small deflection and linearized electrostatic forces. Nayfeh et al.
[20] emphasized the efficacy of accounting for the mid-plane stretching of the beam in order to treat large
deflections for clamped–clamped beams. The model successfully highlights the importance of including the
deflection distribution, geometric nonlinearities and mid-plane stretching in the analysis to avoid
underestimation of the stability limits. Generalized DQM has been used by Osterberg et al. [21] to study
the pull-in behaviour of both clamped–clamped and cantilever based MEMS switches. Various effects like
fringing field, stress gradient and trapezoidal cross-section were considered.

In addition to the stability of equilibria, transient behaviour of microstructures has also been studied by
several authors [11,12,22–28]. Behaviour of cantilever microswitches under step voltages was analysed by
McCarthy et al. [11] using finite difference method. The microswitch modelled as a clamped–clamped
microbeam actuated by step input was studied by Xie et al. [12] using invariant manifold approach. Full-
Lagrangian based relaxation and Newton schemes for dynamic analysis of electrostatic MEMS was presented
by Aluru et al. [22]. Static and dynamic pull-in conditions were analytically examined in Ref. [23] using energy
analysis of a lumped parameter model. Under dynamic conditions, reduction in stable voltages was obtained
whereas the travel range was much extended. Lumped parameter models were used by Nielson et al. [24] for
analytical and numerical analyses of both parallel-plate and torsional actuators. For the ideal case of no
damping, significant decrease in the pull-in voltage was obtained for an applied step voltage. FEM approach
was used [25] to simulate the dynamic behaviour of a clamped–clamped beam type resonator under a suddenly
applied voltage. It was shown that the system may become unstable before the static pull-in voltage due to the
dynamical effects.



ARTICLE IN PRESS
S. Chaterjee, G. Pohit / Journal of Sound and Vibration 322 (2009) 969–986 971
A reduced order model (ROM) was developed by Younis et al. [26] to investigate both static and
dynamic pull-in behaviour of a clamped–clamped beam based microdevice. The macromodel uses few linear-
undamped mode shapes of a microbeam in its straight position as basis functions in a Galerkin procedure.
The model accounts for the mid-plane stretching and the electrostatic force is represented exactly in
the discretization procedure. They observed that numerical results obtained using even number of modes
did not converge. Using five modes for discretization, pull-in time of a pressure sensor was validated with
the experimental results. An elastic cantilever coupled to a plate at the free end was studied by Krylov
and Maimon [27] to investigate the static and transient behaviour in the presence of squeeze film damping.
A ROM, with three modes used in the discretization procedure, predicted the transient dynamics revealing
good agreement with the experimental data. The Lyapunov exponents had been used by Krylov [28]
to indicate dynamic pull-in instability of double clamped microbeam actuated by a suddenly applied
voltage subjected to nonlinear squeeze film damping. Static analysis results obtained with the ROM
were compared with the numeric solution of the boundary value problem (BVP). The number of modes to be
used in the discretization procedure was shown to be dependent on the nonlinear parameter representing
geometric nonlinearity. The transient behaviour obtained with the reduced order and finite difference
models were in good agreement for an undamped beam. Batra et al. [29] considered the von Kármán
nonlinearity and the Casimir force to first develop a reduced-order model for a prestressed clamped elliptic
electrostatically actuated microplate and studied vibrations and pull-in instability of the system. However,
the effect of inertia forces on pull-in parameters has not been analysed. Electromechanical Models have
been proposed for narrow microbeam and parallel array of microplates under the influence of electric field
[30,31]. A closed-form expression was derived in Ref. [31] to study the modal properties and pull-in instability
of the array. A study was undertaken in Ref. [32] to determine the exact mode shapes of vibrations that
are inevitably required in the study of the system in the time-domain, as well as the stability of electrostatic
exciter/detector. An overview of models for electrostatically devices classifying the theoretical, numerical
and experimental works according to the mechanical model used in the analyses has been presented in
Ref. [33].

In this paper, the static and dynamic pull-in behaviours of wide microcantilevers separated by relatively
larger gaps and acted upon by DC electrostatic forces are studied. The structural geometric nonlinearity due to
large deformation effect is quite considerable in microstructures because of their low mass and high flexibility.
For large gaps between the deformable conductor and the ground plane, slope and curvature of the
deformable electrode also needs to be considered for modelling the electrostatic pressure [34]. Few conclusive
studies, investigating the effect of geometric and inertial nonlinearities on the response of electrically actuated
wide microcantilevers separated by large gaps, exist in the literature. A comprehensive model is derived
accounting for the nonlinearities of the system due to electric forces, the geometry of the deflected beam, and
the inertial terms. As studied in the earlier works [29–32,35–40] with varying levels of complexity and
sophistication, the nonlinear curvature and the von Kármán nonlinearity in the axial strain–displacement
relationship are incorporated to account for the geometric nonlinearity of the microcantilever associated with
large deflection. The compatibility of the electrostatic model, with the large deflection theory being used for
the structural model, has been taken care off by incorporating higher order correction of the electrostatic
forces [34]. From the comprehensive model, a ROM is developed to study the effect of nonlinearities on the
static response and the transient dynamics. An investigation is carried out in detail to ascertain number of
modes to be employed for ROM analysis to arrive at results within admissible error. Efficacy of the large
deflection model, for behavioural simulations of electrostatic MEMS, with respect to gap-length ratio of the
devices has been demonstrated in this study.

The rest of the paper is organized as follows. In Sections 2 and 3, respectively, the electromechanical
model and the related BVP have been described. In Section 4, the ROM has been formulated using
Galerkin method. In Section 5, the BVP governing the static deflection has been numerically solved. The
results have been validated with the experimental results available in open literature. Further, the ROM with
the correct number of modes has been used to simulate the transient dynamics. The dynamic results have
been validated with the numerical results available in the literature. Influences of nonlinearities arising
out of electrostatic forces, geometry, and the inertial terms are studied. Conclusions are summarized in
Section 6.
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Fig. 1. (a) A schematic diagram of an electrostatically actuated microcantilever beam model and (b) a schematic diagram of a deflected

microcantilever beam.
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2. Model description

Fig. 1 illustrates a perfect conductor clamped at one end through dielectric support and suspended over a
ground plane. The upper electrode is acted upon by attractive electrostatic force which is non-uniformly
distributed along the length due to the redistribution of the charges as the beam deflects. Even at small
voltages, the tip deflection will be comparable to the air-gap and will be large enough in comparison to the
electrode thickness. The deformable electrodes with thickness much smaller than the characteristic in-plane
dimension can be treated as 2D plate like bodies [29,31,41]. In this work, the electrostatic force is assumed to
be uniform across the width and the deformable conductor is assumed to undergo cylindrical bending
deformations and is treated as a wide (width-thickness ratio greater than 5) beam with the effective Young’s
modulus equal to the plate modulus [20,42]. Under large rigid-body rotations, structures like cantilever beams
undergo large deformations but small strains, and the beam can be modelled by incorporating the von Kármán
nonlinearity in the expression for the axial strain [29–32] and consideration of nonlinear curvature [35–40].
Fringing fields emanating from the lateral and the top surfaces of the deformable electrode need to be
considered while modelling the electrostatic field by accounting for finite width and finite thickness [43,44] of
the beam. For wide beams with beamwidth–airgap ratio greater than 1.5 [43] and width-thickness ratio greater
than 5 [44], the fringing fields are neglected. For flexible structures, the parallel plate capacitance (PPC) is
usually justified by the smallness of the gap-length ratio typically of the order of 10�2–10�3 [45]. The present
work for relatively larger gaps incorporates the second order corrections (SOC) [34] to formulate the
electrostatic model.

3. Boundary value problem (BVP)

The model (Fig. 1) shows an undamped cantilever beam of length l, width b, thickness h separated from the
ground plane by an initial gap of d0. When subjected to a driving DC voltage V, the beam undergoes a
transverse deflection w(x,t) and an axial extension u(x,t), which are dependent on the position x along the
beam length and time t. Geometric nonlinearity arises from two distinct mechanisms: (1) Green strain relation
that quantifies the extensional deformation of the centroidal plane of the beam, and (2) the nonlinear
curvature of the deflection curve. The axial strain xxx [37] associated with the material located at the neutral
axis is given by

xxx ¼
ds� dx

dx
¼ 1þ

quðx; tÞ

qx

� �2

þ
qwðx; tÞ

qx

� �2
" #1=2

� 1 (1)

Using the inextensibility condition (i.e., xxx ¼ 0) in Eq. (1), one gets

1þ
qu

qx

� �2

þ
qw

qx

� �2

¼ 1 (2)
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Following [39] and as shown in Fig. 1, the exact expression for the nonlinear curvature k can be given by

k ¼
qj
qs
¼

1þ
qu

qx

� �
q2w

qx2
�

q2u

qx2
�
qw

qx

1þ
qu

qx

� �2

þ
qw

qx

� �2
" #3=2 (3)

Using Eq. (2), one can express Eq. (3) as

k ¼ 1þ
qu

qx

� �
q2w
qx2
�

q2u
qx2
�
qw

qx
(4)

The bending strain energy Us of the beam is given by

Us ¼
1

2

Z l

0

E � I � k2 dx (5)

where plate modulus E ¼ E0=ð1� n2Þ, E0 is the Young’s modulus, n is the Poisson’s ratio. The beam is assumed
to be prismatic with rectangular cross section, thereby the moment of inertia and the area of the cross section
can be given by I ¼ bh3=12 and A ¼ bh, respectively. The kinetic energy T of the beam can be expressed as

T ¼
1

2

Z l

0

rA
qw

qt

� �2

dxþ
1

2

Z l

0

rA
qu

qt

� �2

dx (6)

where r is the density of the beam material.
Neglecting fringing field capacitance due to width, due to thickness, and, at the free end of the cantilever,

and following [34], the electrical potential energy Ue stored between the beam and the ground plane for large
gap separation is given by

Ue ¼ �
1

2
�0bV 2

Z l

0

1

ðd0 � wÞ
1þ
ðd0=lÞ2

3
�
1

d2
0

�
q
qx
ðd0 � wÞ

� �2
" #

dx (7)

where permittivity constant for free space, �0 ¼ 8:854� 10�12 Fm�1. It may be noted that Eq. (7) incorporates
the corrections up to the second order.

Using Eqs. (4)–(7), and retaining all nonlinearities up to Oð�3Þ, where x/l ¼ O(1), w/l ¼ O(e), and
u/l ¼ O(e2), the set of governing equations of motion of the system using Hamilton principle can be obtained as

rA
q2w
qt2
þ EI

q2

qx2

q2w

qx2
þ 2

q2w
qx2

qu

qx
�

q2u

qx2

qw

qx

� �
þ EI

q
qx

q2w
qx2

q2u

qx2

� �

¼
1

2

�0bV2

ðd0 � wÞ2
1�
ðd0=lÞ2

3d2
0

qw

qx

� �2

þ 2ðd0 � wÞ
q2w
qx2

( )" #

and

�rA
q2u
qt2
þ EI

q2

qx2

q2w
qx2

qw

qx

� �
þ EI

q
qx

q2w

qx2

� �2
" #

¼ 0 (8)

Using Eq. (2) while retaining terms up to O(e3), variable u can be coupled to w. Hence, the equation of motion
of the system reduces to its final form as

rA
q2w
qt2
þ EI

q4w
qx4
þ EI

q
qx

qw

qx

q
qx

qw

qx
�
q2w
qx2

� �� �
þ rA

q
qx

qw

qx

Z x

l

Z x

0

q
qx

q2w
qt2

� �
qw

qx
þ

q
qx

qw

qt

� �� �2
( )

dxdx

" #

¼
1

2

�0bV2

ðd0 � wÞ2
1�
ðd0=lÞ2

3d2
0

qw

qx

� �2

þ 2ðd0 � wÞ
q2w

qx2

( )" #
(9a)



ARTICLE IN PRESS
S. Chaterjee, G. Pohit / Journal of Sound and Vibration 322 (2009) 969–986974
with the boundary conditions as

wð0Þ ¼
qw

qx

����
x¼0

¼ 0

q2w

qx2

����
x¼l

¼
q3w
qx3

����
x¼l

¼ 0 (9b)

Using the non-dimensional variables ŵ ¼ ðw=d0Þ; x̂ ¼ ðx=lÞ; t̂ ¼ ðt=l2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
the above equation can be

expressed as

€wþ wiv þ a1½w0ðw0w00Þ
0
�0 þ a1 w0

Z x

1

Z x

0

f €w0w0 þ ð _w0Þ2gdxdx

� �0
¼

a2
ð1� wÞ2

1�
a1
3
f2w00 � 2ww00 þ ðw0Þ2g

h i
(10a)

wð0; tÞ ¼ w0ð0; tÞ ¼ 0

w00ð1; tÞ ¼ w000ð1; tÞ ¼ 0 (10b)

where

a1 ¼
d0

l

� �2

; a2 ¼
6�0l

4V 2

Eh3d3
0

It may be mentioned that over prime and over dot indicates derivative with respect to non-dimensional position
and time, respectively. It is to be further noted that caps (4) are removed for convenience. The effect of
different design parameters are indicated by Eq. (10a) through the non-dimensional parameters a1 and a2. The
nonlinear curvature which enters the equation as a cubic term and represented by the third term on the left
hand side of the equation, has a stiffening effect on the system. Further, the influence of the nonlinear curvature
is dependent on the ratio (a1) of the initial air-gap distance d0 to the microbeam length l rather than on their
actual values. The influence becomes more prominent as the ratio increases and the results are dictated by the
relative values of a1 and a2. The SOC of the electrostatic forces which is represented by the second term on the
right hand side of the equation depends on the slope and curvature of the deformable beam.

4. Galerkin formulation

Modal decomposition [26] is performed in this section to facilitate the study of transient behaviour of the
microcantilever in response to the DC forcing. The method of Galerkin decomposition is employed to
approximate the system equations (10) by a ROM composed of a finite number of discrete modal equations.
The process of Galerkin decomposition starts with separating the dependences of the deflection of the
deformed beam, w(x,t), into temporals and spatials by functions si(t) and fi(x), respectively, in the form of a
series of products, i.e.,

wðx; tÞ ¼
XN

i¼1

siðtÞfiðxÞ (11)

where N represents the number of modes retained in the solution.
fi(x) is the ith linear undamped mode shape of the undeflected microcantilever obtained from the following

linear undamped eigenvalue problem of a straight beam

fiv
i ¼ o2

i fi (12a)

fið0Þ ¼ f0ið0Þ ¼ f00i ð1Þ ¼ f000i ð1Þ ¼ 0 (12b)

It is worth mentioning that fi(x) is normalized such that
R 1
0 f

2
i dx ¼ 1.

Multiplying Eq. (10a) by (1�w)2, substituting Eqs. (11) and (12a) into the resulting equation, multiplying
by fn(x), and integrating the outcome from x ¼ 0 to 1, the coupled nonlinear ODEs of the system can be
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derived as

€sn þ sno2
n þ

XN

i¼1

XN

j¼1

XN

k¼1

€sisjsk

Z 1

0

fnfifjfk dx� 2
XN

i¼1

XN

j¼1

€sisj

Z 1

0

fnfifj dxþ
XN

i¼1

XN

j¼1

XN

k¼1

sisjsko2
i

Z 1

0

fnfifjfk dx

� 2
XN

i¼1

XN

j¼1

sisjo2
i

Z 1

0

fnfifj dxþ a1
XN

i¼1

XN

j¼1

XN

k¼1

sisjsk

Z 1

0

fnf
00
i f
00
j f
00
k dx

"

þ
XN

i¼1

XN

j¼1

XN

k¼1

XN

p¼1

XN

q¼1

sisjskspsq

Z 1

0

fnf
00
i f
00
j f
00
kfpfq dx� 2

XN

i¼1

XN

j¼1

XN

k¼1

XN

p¼1

sisjsksp

Z 1

0

fnf
00
i f
00
j f
00
kfp dx

þ 4
XN

i¼1

XN

j¼1

XN

k¼1

sisjsk

Z 1

0

fnf
0
if
00
j f
00
k dxþ 4

XN

i¼1

XN

j¼1

XN

k¼1

XN

p¼1

XN

q¼1

sisjskspsq

Z 1

0

fnf
0
if
00
j f
000
k fpfq dx

� 8
XN

i¼1

XN

j¼1

XN

k¼1

XN

p¼1

sisjsksp

Z 1

0

fnf
0
if
00
j f
000
k fp dxþ

XN

i¼1

XN

j¼1

XN

k¼1

sisjsko2
i

Z 1

0

fnfif
0
jf
0
k dx

þ
XN

i¼1

XN

j¼1

XN

k¼1

XN

p¼1

XN

q¼1

sisjskspsqo2
i

Z 1

0

fnfif
0
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XN

j¼1
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p¼1
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i
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0

fnfif
0
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0
kfp dx

þ
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XN

j¼1

XN

k¼1
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0
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XN

i¼1

XN

j¼1

XN

k¼1

XN

p¼1

XN

q¼1

€sisjskspsq

Z 1

0

fnfpfqbijk dx

� 2
XN

i¼1

XN

j¼1
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k¼1

XN

p¼1

€sisjsksp

Z 1

0

fnfpbijk dxþ
XN

i¼1

XN

j¼1

XN

k¼1

_si _sjsk
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0

fnbijk dx

þ
XN

i¼1

XN

j¼1

XN

k¼1

XN

p¼1

XN

q¼1

_si _sjskspsq
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0

fnfpfqbijk dx� 2
XN

i¼1

XN

j¼1

XN

k¼1

XN

p¼1

_si _sjsksp

Z 1

0

fnfpbijk dx

#

� a2

Z 1

0

fn dx�
a1
3

2
XN

i¼1

si

Z 1

0

fnf
00
i dx� 2

XN

i¼1

XN

j¼1

sisj

Z 1

0

fnfif
00
j dxþ

XN

i¼1

XN

j¼1

sisj

Z 1

0

fnf
0
if
0
j dx

 !" #

¼ 0; n ¼ 1; 2; . . . ;N (13)

where bijk ¼ ½f
0
k

R x

1

R x

0 f0if
0
j dxdx�0.

It should be noted that the above method of treating the electrostatic force term ensures its exact
representation. In the process, the mass matrix of Eq. (13) no longer remains diagonal as obtained in Refs. [27,28].

5. Results

In this section, firstly, the static analysis is carried out by directly solving the BVP. The model is validated
for the static pull-in voltage and the static pull-in deflection. The convergence of the model obtained through
Galerkin decomposition method is then studied by comparing the results with the static solution of the BVP.
The ROM with the correct number of modes is then used to study the dynamic behaviour under an applied
voltage varying as non-smooth function of time.

5.1. Static analysis

The static deflection equation is obtained by setting all time derivatives in Eq. (10a) to zero. The two-point
BVP was numerically solved for w(x) using the Matlab BVP solver [46]. The numerical procedure implements
a collocation method for the solution of two point BVP. The first step is to express the governing equation as a
system of first order differential equations (collocates). An initial guess is supplied for each variable used to
define the first order differential equations. The guess for an initial mesh is then used by the finite difference
code to obtain accurate numerical solution within an absolute tolerance of 10�6. Fig. 2 reveals the existence of
two solutions for each value of the gradually applied DC voltage. The pull-in condition is predicted as both
the solutions coalesce at a certain voltage. It has been shown by earlier authors [20,28] that the upper-branch
solution is unstable whereas the lower branch corresponds to the stable equilibrium configurations. Hereafter,



ARTICLE IN PRESS

Fig. 2. Variation of the non-dimensional tip deflection wmax with voltage V for the beam properties E0 ¼ 155:8e9Pa, b ¼ 5000e� 6m,

h ¼ 57e� 6m, d0 ¼ 92e� 6m, l ¼ 20000e� 6m, n ¼ 0.06 as used in Ref. [19].

Fig. 3. Comparison of end gap results for a1 ¼ 2:1e� 5.
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in this paper, the lower branch will suffice for the static deflection of the microcantilever. To validate the
proposed model the pull-in results are compared with the results obtained in Ref. [19]. Fig. 3 clearly shows that
the pull-in results of the present work are in better agreement with the experimental results in comparison to
the analytical results of [19] which are based on linearized electrostatic forces. The estimated static pull-in
voltage (VSPI) is 66.78V using the proposed model compared to 68.5V obtained experimentally in Ref. [19].
The pull-in voltage predicted in Ref. [21] for the same system configuration was 66.4V, only after due
consideration of fringing field and stress gradient effects which have been neglected in this study.

To study the influence of the nonlinear curvature, the microbeam static deflection equation was solved for a
range of electrostatic forces ranging from zero to the forcing level where structural instability (pull-in)
develops. This procedure was repeated for various values of a1. Fig. 4 shows the variation of the non-
dimensional tip deflection wmax with a2 for various values of a1. At low levels of the electrostatic force,
represented by a2, the curve is linear but nonlinearity starts showing its effects as a2 increases to higher (41)
values. As a1 increases, the value of a2 at which pull-in develops also increases. This is in support of the fact
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Fig. 4. Variations of the non-dimensional tip deflection wmax with a2 for various values of a1.

Table 1

Comparison of the static pull-in parameters obtained using the parallel plate capacitance (PPC) model and the second order correction

(SOC) of the electrostatic forces.

a1 (a2)SPI (w)SPI

SOC PPC SOC PPC

2.1e–5 1.681 1.681 0.4462 0.4455

0.04 1.706 1.693 0.4530 0.4585

0.09 1.739 1.708 0.4603 0.4584

0.16 1.788 1.728 0.4760 0.4710

0.25 1.854 1.751 0.4894 0.4672

0.36 1.943 1.783 0.5008 0.4728
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that geometric nonlinearity has got a stiffening effect on the system and is obvious from Eq. (10). However,
the effect of geometric nonlinearity is predicted to be significant for a1 values 0.09 and above. It has been
predicted in the earlier works [10,14,23] that the pull-in instability develops at the normalized maximum
deflection (wmax) value of 0.33, but the results in Figs. 2–4 show that the non-dimensional static pull-in
deflection lies in the range of 0.45 to 0.5. These results indicate that linear theories grossly underestimate the
stability limits of the microcantilever. The static pull-in parameters are also compared with the results
obtained by neglecting the second term on the right hand side of Eq. (10a), and thus assuming PPC. As shown
in Table 1, for values of a1 equal to 0.09 and above, significant improvement is observed in the static pull-in
electrostatic strength ½ða2ÞSPI� and static pull-in deflection [ðwÞSPI] parameters when SOC of electrostatic forces
is taken into account over PPC approximation. The PPC approximation that neglects the higher order terms is
found to underestimate the pull-in parameters.

5.2. Simulation of static behaviour

To derive the discretized static equations, si(t) is let independent of time and once all time derivatives in
Eq. (13) are set equal to zero, a set of nonlinear algebraic equations is obtained. First the set of nonlinear
algebraic equations is numerically solved for a particular number of modes. This is also known as ROM
analysis. The microcantilever static deflection is thereafter obtained from Eq. (11) for any DC voltage V. Fig. 5
compares the static solution obtained by directly solving the BVP with the static deflection results of the ROM
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Fig. 5. (a) Predictions of the normalized tip deflection by the ROM of different orders and (b) enlarged plot of the predictions near the

pull-in.
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simulations. The number of modes is varied from one to five. The design specifications used are same as in
Fig. 2. Using different number of modes in the discretization procedure, the predicted values of the VSPI have
been plotted in Fig. 6. The results obtained in Ref. [26] shows poor convergence for even number of modes
while the results have been published only for odd number of modes in Refs. [27,28]. In the present study, it
has been observed (Fig. 5b) that the deflection curve obtained through ROM simulation shifts on either side of
the BVP solution, depending on the number of modes considered. The same phenomenon has been also
observed and cited in Ref. [47]. It is further noted from Fig. 6 that the results exhibit good convergence when
five or more number of modes is taken in the analysis irrespective of the number being even or odd.
Convergence is also exhibited with five modes for higher values of a1. It is therefore recommended that at least
five modes should be taken to obtain converged results.

5.3. Simulation of dynamic behaviour

The five-mode ROM has been used, in this section, to study the behaviour of the microcantilever under a
suddenly applied DC voltage. A set of nonlinear ODEs obtained from Eq. (13) with N ¼ 5 is numerically
solved for zero initial conditions to predict the transient behaviour. The dynamic model has been validated by
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Fig. 6. Comparison of the static pull-in voltages (VSPI) predicted by the ROM of different orders.

Fig. 7. Non-pull-in response at an applied step voltage of 0.5V for the beam properties E0 ¼ 169e9Pa, b ¼ 10e� 6m, h ¼ 0:5e� 6m,

d0 ¼ 0:7e� 6m, l ¼ 80e� 6m, n ¼ 0.3, r ¼ 2231kgm�3 as used in Ref. [22].
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comparing the non-pull-in and pull-in results with the numerical results obtained in Ref. [22]. A step voltage of
0.5V is applied and the corresponding response of the tip of the microcantilever is plotted as shown in Fig. 7.
In the same plot, numerical results obtained in Ref. [22] are also shown. It has been observed that both the
results are in excellent agreement. The resonant frequency at 0.5V is found from the time period as 108.5 kHz
compared to 109 kHz as obtained in Ref. [22]. It has been further shown in Fig. 8 that the dynamic pull-in
characteristics of the cantilever beam observed at dynamic pull-in voltage (VDPI) of 2.12V in Ref. [22] match
well with the pull-in characteristics at VDPI of 2.25V obtained with the present numerical scheme. A small
deviation in the response characteristics is observed (Fig. 8) after the beam reaches the dynamic pull-in
deflection (about 0.44 mm) due to the extreme sensitivity of the response to the actuation voltage at pull-in.

For a particular value of a1 and varying excitation voltages, the tip deflection time history, as obtained in
Fig. 9, predicts periodic motion below a certain critical value of the voltage known as the dynamic pull-in
voltage (VDPI). With the time period increasing with voltage, a definite softening effect of the electrostatic
forces and the inertial nonlinearity is concluded. For a certain voltage above the critical value, the periodic



ARTICLE IN PRESS

Fig. 8. Pull-in response under step voltage actuations for the beam properties as used in Ref. [22].

Fig. 9. Deflection time history under various suddenly applied DC voltages for a1 ¼ 2:1e� 5.
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motion gives away to a divergent motion and the beam abruptly collapses onto the electrode. The quantitative
estimation of the dynamic pull-in parameters can be made from the corresponding phase plots as shown in
Fig. 10. The dynamic pull-in condition is marked by the separatrix on the phase plane. The dynamic pull-in of
the microbeam occurs at an applied voltage (VDPI) of 60.79V, which is well below the static pull-in voltage
(VSPI) of 66.78V. The dynamic pull-in deflection (0.6–0.7), however, increases thus increasing the travel range
of the beam under applied voltages varying as non-smooth function of time. In order to highlight the effect of
higher mode, the dynamic pull-in condition for the single mode model (dark continuous line) is also included
in Figs. 9 and 10 which clearly show that single-mode model predictions vary significantly from the five-mode
model results, for example, the dynamic pull-in of the microbeam is obtained at an applied voltage of 60.40V
with single mode analysis whereas the phenomenon is not observed for five mode analysis carried out at the
same (60.40V) voltage. Ripples can be observed in the response curves for the five mode analysis due to the
excitation of higher modes [27].

The effect of geometric nonlinearity on the transient behaviour has been studied in detail. The dynamic pull-
in behaviour of beams for various values of a1 has been simulated. For brevity, simulations for few values of
a1 have been presented in Figs. 11 and 12. Fig. 11 reveals that the electrostatic force for the dynamic pull-in,
represented by ða2ÞDPI, increases significantly with a1. However, as predicted in the case of static analysis, the
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Fig. 10. Phase plot of the five-mode model of the microcantilever excited by various suddenly applied DC voltages, a1 ¼ 2:1e� 5.

Fig. 11. Deflection time history at pull-in for various values of a1.
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effect of geometric nonlinearity is found to be significant for a1 values 0.09 and above. From the
corresponding phase plot, as shown in Fig. 12, it is observed that before the beam deflection reaches the value
of dynamic pull-in deflection (0.6–0.75), the tip velocity at a certain tip displacement is higher for a higher
value of a1, and, is lower for a higher value of a1 as the beam deflects beyond and approaches the ground
electrode. This may be attributed to the fact that for beams with higher values of a1, ða2ÞDPI values are higher
resulting in higher beam velocities and larger softening effects whereas the stiffening effects of geometric
nonlinearity are larger in the large deflection range. Thus, the overall effect, in the entire deflection range, due
to the nonlinearities may be stiffening/softening depending on the relative strengths of the nonlinearities.
Moreover, these variations in the tip velocity affect the total time (pull-in time) the beam takes to collapse
(represented by non-dimensional tip deflection of unity) onto the electrode as shown in Fig. 11. To highlight
the importance of inclusion of higher order corrections in the electrostatic model, a comparison of the
dynamic pull-in electrostatic strength [ða2ÞDPI] obtained with the SOC model and the PPC model is shown in
Table 2. As observed in the static analysis, significant improvement in the dynamic pull-in parameter is
obtained with the SOC model for a1 values equal to 0.09 and above.
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Fig. 12. Phase plot at pull-in for various values of a1.

Table 2

Comparison of the dynamic pull-in electrostatic strength ((a2)DPI) obtained using the parallel plate capacitance (PPC) model and the

second order correction (SOC) of the electrostatic forces.

a1 (a2)DPI

SOC PPC

2.1e–5 1.393 1.393

0.04 1.414 1.404

0.09 1.441 1.416

0.16 1.480 1.434

0.25 1.534 1.457

0.36 1.606 1.485

Fig. 13. Deflection time history of the microcantilever at representative values of a2 in the vicinity and well below pull-in for various values

of a1.
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Fig. 14. Phase plot at representative values of a2 in the vicinity and well below pull-in for various values of a1.

Fig. 15. Variations of the non-dimensional resonant frequency with a1 for various values of a2. SOC: second order correction and PPC:

parallel plate capacitance.
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In order to understand the impact of geometric nonlinearity for actuation voltages in the vicinity and well
below pull-in, three practical cases of transient actuation have been presented in Figs. 13 and 14. For each
case, the time history and the phase plot have been obtained for beams with various values of a1 actuated by
the electrostatic force of same strength a2. For the representative case well below pull-in (a2 ¼ 0.8), varying
a1 results in no significant variation in the behaviour, and, as shown in Figs. 13 and 14 the curves overlay each
other. In the vicinity of pull-in (a2 ¼ 1.35, 1.62), the overall effects due to the nonlinearities are such that the
stiffening effect of geometric nonlinearity is considerable enough. For a2 ¼ 1.35, amplitude (Figs. 13 and 14)
and time period (Fig. 13) of the periodic motion decreases with increase in a1. In the representative case of
a2 ¼ 1.62, the pull-in time monotonically decreases with increase in a1 as shown in Fig. 13. This decreasing
trend can be further explained with the help of Fig. 14 which predicts lower tip velocities, almost in the entire
deflection range, for beams with higher values of a1. In Fig. 15, variations of non-dimensional resonant
frequency is plotted against a2 for various values of a1. The softening effects of the electrostatic forces and the
inertial terms are further depicted in the figure. As the applied step voltage increases, the structure is softened
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and the resonance reduces. Moreover, for periodic motions well bellow pull-in (a2 ¼ 0.8), varying a1 results in
no significant variation in resonant frequency, whereas, in the vicinity of pull-in the resonant frequency of
stable periodic motion increases significantly with increase in a1. For comparison, resonant frequency plots for
various values of a1 have also been obtained with the PPC approximation and the plot for a1 value of 0.36 has
been shown in Fig. 15. The PPC model predictions of resonant frequencies for higher values of a2 (40.8) are
found to be significantly underestimated.

6. Conclusions

The static and dynamic behaviour of a microcantilever, with relatively large gap to beam-length ratios,
under electrostatic actuation is studied herein with special emphasis on the nonlinear effects due to geometry,
electric forces, and inertial terms. The deflections near pull-in being large, model derived on the basis of large
deflection assumption effectively predicts the behaviour. In case there is large gap between deformable
conductor and ground plane, it is essential to consider higher order corrections of electrostatic forces during
the formulation of the model. In the present work, it has been shown that results are much improved when
higher order terms are taken into account during static and dynamic analysis. The numerical results of the
static analysis are validated with experimental and analytical results available in open literature. According to
the results of static analysis where the voltages are applied gradually, a linear model can appreciably predict
the static behaviour for small electrostatic forces as the deflections are small. For higher strengths of
electrostatic forces close to pull-in, coupled effects of geometric nonlinearity, and nonlinear electrostatic forces
with higher order correction terms cause deviation from the linearized results while the effects are significant
for initial gap to beam-length ratios of 0.3 and above. Consideration of nonlinearities gives a better estimation
of the stability limits which can be advantageously used for design of non-pull-in devices.

A ROM incorporating the correct number of modes provides a compact yet accurate approach to study the
behaviour of microstructures. This approach has been extensively evaluated in the present work and has been
effectively used to study the transient behaviour of microcantilevers. Results exhibit good convergence for five
or more number of modes irrespective of the number being even or odd.

The numerical results of the dynamic analysis are validated with other numerical results available in open
literature. According to the results of the transient analysis, nonlinear electrostatic forces and the inertial
effects cause softening of the microstructure whereas geometric nonlinearity has got a stiffening effect on the
microstructure. The overall effect, in the entire deflection range, due to the nonlinearities may be stiffening/
softening depending on the relative strengths of the nonlinearities. At and near pull-in, geometric nonlinearity
has got significant effect on the response characteristics for systems with initial gap to beam-length ratios of
0.3 and above. For actuations at applied voltages well below the dynamic pull-in voltage, geometric
nonlinearity does not play any significant role. Thus, for applications in and around the pull-in zone, the large
deflection model needs to be considered for effective design of microcantilever based microsystems.
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incorporating the Casimir force, Journal of Sound and Vibration 315 (2008) 939–960.

[30] R.C. Batra, M. Porfiri, D. Spinello, Vibrations of narrow microbeams predeformed by an electric field, Journal of Sound and Vibration

309 (2008) 600–612.

[31] M. Porfiri, Vibrations of parallel arrays of electrostatically actuated microplates, Journal of Sound and Vibration 315 (2008)

1071–1085.

[32] P.A. Hassanpour, W.L. Cleghorn, E. Esmailzadeh, J.K. Mills, Vibration analysis of micro-machined beam-type resonators, Journal

of Sound and Vibration 308 (2007) 287–301.

[33] R.C. Batra, M. Porfiri, D. Spinello, Review of modeling electrostatically actuated microelectromechanical systems, Smart Materials

and Structures 16 (2007) R23–R31.

[34] S. Krylov, S. Seretensky, Higher order correction of electrostatic pressure and its influence on the pull-in behaviour of

microstructures, Journal of Micromechanics and Microengineering 16 (2006) 1382–1396.

[35] H. Wagner, Large-amplitude free vibrations of a beam, Journal of Applied Mechanics 32 (1965) 887–892.

[36] J. Liua, D.T. Martin, K. Kadirvel, T. Nishida, L. Cattafesta, M. Sheplak, B.P. Mann, Nonlinear model and system identification of a

capacitive dual-backplate MEMS microphone, Journal of Sound and Vibration 309 (2008) 276–292.

[37] S.R. Hsieh, S.W. Shaw, C. Pierre, Normal modes for large amplitude vibration of a cantilever beam, International Journal of Solids

and Structures 31 (1994) 1981–2014.

[38] S.N. Mahmoodi, N. Jalili, Non-linear vibrations and frequency response analysis of piezoelectrically driven microcantilevers,

International Journal of Nonlinear Mechanics 42 (2007) 577–587.

[39] D.H. Hodges, Proper definition of curvature in nonlinear beam kinematics, American Institute of Aeronautics and Astronautics

Journal 22 (1984) 1825–1827.

[40] A.H. Nayfeh, C. Chin, S.A. Nayfeh, Nonlinear normal modes of a cantilever beam, Journal of Vibration and Acoustics 117 (1995)

477–481.

http://www.coventor.com/media/fem_comparisons/pullin_voltage.pdf


ARTICLE IN PRESS
S. Chaterjee, G. Pohit / Journal of Sound and Vibration 322 (2009) 969–986986
[41] R.C. Batra, M. Porfiri, D. Spinello, Reduced-order models for microelectromechanical rectangular and circular plates incorporating

the Casimir force, International Journal of Solids and Structures 45 (2008) 3558–3583.

[42] P.M. Osterberg, Electrostatically Actuated Microelectromechanical Test Structures for Material Property Measurements, Ph.D.

Thesis, Massachusetts Institute of Technology, 1995.

[43] J.M. Rabaey, Digital Integrated Circuits, Prentice-Hall, Englewood Cliffs, NJ, 1996, pp. 438–445.

[44] R.C. Batra, M. Porfiri, D. Spinello, Electromechanical model of electrically actuated narrow microbeams, Journal of

Microelectromechanical Systems 15 (2006) 1175–1189.

[45] J.A. Pelesko, D.H. Bernstein, Modeling MEMS and NEMS, Chapman&Hall/CRC Press, London/New York/Washington, DC, 2003

(Chapter 7).

[46] L.F. Shampine, M.W. Reichelt, J. Kierzenka, Solving boundary value problems for ordinary differential equations in MATLAB with

bvp4 /http://www.mathworks.comS.

[47] G. Pohit, A.K. Mallik, C. Venkatesan, Free out of plane vibration of a rotating beam with nonlinear elastomeric constraints, Journal

of Sound and Vibration 220 (1999) 1–25.

http://www.mathworks.com

	A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams
	Introduction
	Model description
	Boundary value problem (BVP)
	Galerkin formulation
	Results
	Static analysis
	Simulation of static behaviour
	Simulation of dynamic behaviour

	Conclusions
	References


